Reproductive Anatomy and Egg Formation

AgScience Poultry Science Curriculum
Section 3
Egg Anatomy

Fertile (hatching eggs) and infertile eggs have many of the same structures.

These structures can be classified:

• Nutritional
• Protective (biological and physical)
• Facilitative
Egg Anatomy

Immediately beneath surface of egg shell, regulates gas and moisture exchange, prevents bacteria from entering into egg; protective. Air cell develops between inner and outer surface of shell membranes. Complex structure of calcium carbonate. Contains millions of tiny pores that allow for gas exchange; dehydration, and bacterial passage into egg. Primary function is protective.
Also called the vitelline membrane, encloses the yolk, secretes enzymes that help breakdown and release yolk nutrients for use by the embryo.

Protein Source for the developing embryo, consists of outer layer of thin, watery albumen, middle layer of thick, and inner thin; proportion of thin increases over time as the thick albumen breaks down as it ages.

Cord-like structures found on both sides of the yolk, anchor yolk in place to prevent yolk rotation.
Many physiological changes occur in the hen approaching sexual maturity

- At 12-14 weeks of age (broiler breeder hen) the developing ovary begins to release estrogen
- Estrogen major role is in preparing the hen’s body for reproduction
Egg Production

Estrogen’s role in sexual maturity:

• Enlargement and growth of the reproductive tract (oviduct)
• Increased calcium flux into the medullary bones
• Enlargement of the vent area
• Spreading of the pubic bones (between which the eggs pass)
• Formation of lipids in the liver
Egg Production

Other factors for initiating egg production:

• Adequate body size must be obtained
• Photosimulation

Photostimulation:

• Over 14 hrs of light
• Initiates cascade of hormones result in ovulation

AGE + BODY SIZE/CONFORMATION + INCREASED PHOTOPERIOD = INITIATION OF EGG PRODUCTION
Events that occur with increasing photoperiod:

- Hypothalamus responds to increasing photoperiod
- Hypothalamus signals anterior pituitary to produce FSH
 - FSH = follicle stimulating hormone
- FSH travels to ovary in blood
- Stimulates development of follicles
Egg Production

Follicles will be in various stages of development

• Initially white
• More mature follicles appear yellow because of accumulated pigment

Follicles are categorized as follows:

• Small white follicles
• Large white follicles
• Small yellow follicles
• Large yellow follicles
At any given time a normal ovary will contain several mature (large yellow) follicles

- Largest follicle is the next to be released and is called F1
- Next largest follicle is the F2, etc
Egg Production

When a follicle is fully mature it releases progesterone

- Progesterone travels to the anterior pituitary

Anterior pituitary responds by producing LH

- LH = Luteinizing hormone

- LH travels back to the mature follicle causing it to rupture
Egg Production

When the follicle ruptures and the yolk is released is referred to as ovulation.

- Empty follicle after ovulation is referred to as the post-ovulatory follicle (POF)

Follicles rupture at the stigma

- Stigma - area on the follicle where there are no blood vessels
- If does not rupture at the stigma a blood spot will occur on the yolk
Egg Production

The reproductive tract of a hen is a very specialized organ capable of producing the different parts of the egg

• Estrogen released from the developing ovary initiates oviduct growth and maturation

The oviduct contains the following structures:

• Infundibulum
• Magnum
• Isthmus
• Uterus
Egg Production

Inner and outer shell membranes are synthesized and placed around albumen. Catches the yolk released from the follicle. Also the site of fertilization.

Site of albumen synthesis. Albumen accumulates as the yolk spins down the oviduct. The yolk spinning results in chalazae formation.

Also called the shell gland is the site of egg shell formation.
Egg Production

It takes approximately 24 hours for an egg to form

- Time spent in each segment of the oviduct is proportionate to the function of the segment
- Infundibulum – 15-30 min
- Magnum – 3 hrs
- Isthmus – 1.25 hrs
- Uterus – 20-21 hrs
Egg Production

Egg shell is approximately 40% calcium

- Calcium carbonate crystals (CaCO_3)

High levels of dietary calcium are required for hens during egg production

- Dietary calcium is not directly used in egg shell formation
- Replaces used calcium from bones

Most of the calcium used for shell formation is released by the medullary bones

- Ribs
- Femur
- Tibia
Egg Production

Blood Plasma

Ca^{++}

HCO_3^-

CO_2

H_2O

$2H^+$ (Buffered by HCO_3^-)

Shell Gland Mucosal Cell

Ca^{++}

CO_2

H_2CO_3

HCO_3^-

H^+

H^+

Carbonic Anhydrase

Shell Gland Fluid

Ca^{++}

HCO_3^-

H^+

forming egg shell

$CaCO_3$
Timeline of Egg Production

Hens usually lay eggs on several consecutive days

- Number of days in a row is called the clutch length
- Leghorn hens which have been bred for egg production have very long clutches
- Broiler breeder and turkey hens have shorter clutch lengths

Hens must have dark hours to initiate egg production

- LH is released 1 hr after dark
- Too little dark will reduce clutch length
Why is it beneficial for the follicle to rupture at the stigma?

The stigma is the area on the follicle where no blood vessels pass, by rupturing at the stigma no blood is released and blood will not be present in the egg.
A hen lays eggs for 10 consecutive days and skips a day on the 11th day. What was the clutch length?

The clutch length was 10.
Why is it important to expose a hen to dark hours?

LH release only occurs during dark periods, therefore darkness is required for egg production. Too few dark hours will result in the number of consecutive LH releases to be reduced, resulting in short clutch lengths.
Critical thinking:

How is the process of shell formation affected by heat stress?

Heat stress leads to panting, causing a drop in carbon dioxide levels. To balance pH in blood HCO_3^- is excreted resulting in a decrease in raw materials for egg shell formation. Decreases feed intake also therefore decrease in calcium consumption. Potential for formation of thin shelled eggs.